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Abstract

Invasive plants threaten biodiversity worldwide and effective management

must control the target invader while conserving biodiversity. Herbicide is

often used to control invasive plants, but potential negative impacts on biodi-

versity have led to spot spraying being recommended over boom spraying to

minimize the exposure of nontarget species to chemicals. We examined the

influence of herbicide application methods on off-target plant communities in

threatened temperate grasslands of southeastern Australia, where spraying

with the broadleaf herbicide fluroxypr is commonly used to control St. John’s
wort, Hypericum perforatum L. It is well established that fluroxypr effectively

controls H. perforatum but few studies have examined its impact on native

forbs. A spray drift experiment using water-sensitive cards indicated that

ground surface coverage was higher for spot spraying (91%–99%) than for

boom spraying (5%–31%). We established a replicated, 3-year, before-after-

control-impact experiment across 48 1-m2 quadrats to determine how three

herbicide application methods (spot spray, fine boom and coarse boom)

affected nontarget native forbs, the group most likely to be affected by broad-

leaf herbicides. This experiment was conducted in grasslands where

H. perforatum was almost absent, so responses would reflect the direct impacts

of the chemical, rather than structural changes resulting from removal of the

target invader. Spot spraying decreased the probability of occurrence of native

leguminous forbs, while increasing the occurrence of exotic leguminous forbs

and the richness of all exotic species and exotic annual forbs. Spot spraying

reduced the occurrence of the native Desmodium varians and the abundance

of the native Chrysocephalum apiculatum. During this 3-year study, native spe-

cies appeared to be impacted either directly by fluroxypr or indirectly by

increased competition with exotic species. Where herbicide application is

deemed crucial in these grasslands, we recommend boom spraying when

H. perforatum density is moderate to high. Spot spraying should only be used
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when the density of H. perforatum is very low. Given the regional variation in

H. perforatum density, the spatial scale of invasion, soil depth, and conserva-

tion values, we present a decision tree to assist managers in evaluating the

costs and benefits of chemical control, indicating situations where alternative

or modified methods could be used.
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INTRODUCTION

Invasive plants threaten biodiversity worldwide by
displacing resident individuals (Thiele et al., 2010), limit-
ing colonization rates of new individuals (Yurkonis et al.,
2005), changing plant community dynamics (Catford
et al., 2019), and altering ecosystem processes, including
disturbance regimes (e.g., grazing and fire; Fusco et al.,
2019) and nutrient cycling (Ahmad et al., 2021;
Broadbent et al., 2017; Ehrenfeld, 2003). Invasion of
exotic species can alter life-history trade-offs (such as
competition vs. colonization, Catford et al., 2018), a pro-
cess which might underlie invasion-associated extinction
risk globally (Baider & Florens, 2011; Briggs & Leigh,
1996; Dangremond et al., 2010; Downey & Richardson,
2016; Pyšek et al., 2017). Invasion-associated declines in
biodiversity can reduce ecosystem productivity, resilience
and stability (Vetter et al., 2020). Managing invasive spe-
cies is therefore critical to conserving biodiversity and
ecosystem function (Ricciardi et al., 2021; Veldman
et al., 2015).

Globally, billions of dollars are spent every year on
controlling and managing invasive species (Cuthbert
et al., 2021; Gaba et al., 2016; Pimentel et al., 2005;
Setterfield et al., 2013; Watari et al., 2021), a cost that is
rising continuously (Diagne et al., 2021). The overarching
objectives of invasive plant control are generally to con-
serve biodiversity (Reid et al., 2009; UNEP, 2011), but
outcomes are more commonly measured by the impact
on the cover and abundance of the target invasive plant,
assuming this will have positive biodiversity outcomes
(Downey et al., 2009; Kettenring & Adams, 2011;
Zavaleta et al., 2001). While there are examples of weed
management programs having positive biodiversity out-
comes (e.g., Flory, 2010; Lindenmayer et al., 2017;
Peterson et al., 2020; Rohal et al., 2019), monitoring bio-
diversity is far from routine in invasive species control
programs, usually because of lack of time and money
(D’Antonio & Meyerson, 2002; Downey et al., 2009;
Kettenring & Adams, 2011; King & Downey, 2008; Reid
et al., 2009). In some circumstances, the localized effects
of invasive plant control on native species have been

neutral (O’Loughlin et al., 2019; Rice et al., 1997) or neg-
ative (Rinella et al., 2009; Skurski, 2013). Other studies
have found that controlling target invaders can facilitate
the invasion of the same (secondary invasion) or a differ-
ent invasive species (Peterson et al., 2020; Reid et al.,
2009) because of reduced competition and increased
resource availability (Pearson et al., 2016). Given the
wide range of responses across different plant communi-
ties, it is clear that invasive species control should not be
measured by the impact of the target invader alone (Prior
et al., 2018). Monitoring resident plant communities dur-
ing weed control must be planned for, implemented,
appropriately funded, and quantitatively reported if man-
agement programs are to meet their goals of conserving
biodiversity.

Most land managers consider herbicide to be the most
economical and effective method for controlling invasive
plants, and it is the most commonly used control method
in high-income countries worldwide (Kettenring &
Adams, 2011; Van Bruggen et al., 2018; Weidlich et al.,
2020). In Canada, for example, more than 1 million ha of
wildlands were sprayed with herbicide in the period
2007–2011 (Wagner et al., 2017). Although some studies
have found largely neutral effects of herbicide on ecosys-
tem function (e.g., decomposition and nutrient cycling,
Hagner et al., 2019) several negative impacts have also
been found. Herbicide use has been associated with
declines in native plant species cover, richness and com-
munity composition (Guido & Pillar, 2017; Peterson
et al., 2020; Qi et al., 2020; Skurski, 2013). Herbicide can
alter phenology and negatively impact the reproduction
rates of native species (Rokich et al., 2009; Wagner &
Nelson, 2014), even when effects on biomass and vegeta-
tive traits are not strong (Carpenter et al., 2020; Crone
et al., 2009; Schmitz et al., 2014). Such effects on plant
reproduction can carry over to the F1 generation (Qi
et al., 2017). Forbs are particularly at risk from herbicides
that target broadleaf groups (Crone et al., 2009) while native
shrubs and grasses can be threatened by broad-spectrum
herbicides (Matarczyk et al., 2002; Power et al., 2013;
Rokich et al., 2009). Herbicide can also have negative
impacts on soil microbial communities (Druille et al., 2016),
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pollination (Dupont et al., 2018; Motta et al.,
2018), and terrestrial and aquatic animal communities
(Haughton et al., 1999; Relyea, 2005; Rumschlag et al.,
2020; Saska et al., 2016; Van Bruggen et al., 2018). The
ecological effects of herbicide use, therefore, must be
understood so that the risks can be weighed against the
impacts of the weeds themselves (Gaba et al., 2016;
Skurski, 2013).

The herbicide application method is considered impor-
tant when managing native ecosystems as it influences
spray drift to nontreatment areas that can negatively affect
biodiversity and ecosystem function (Dupont et al., 2018;
Florencia et al., 2017; Gove et al., 2007; Strandberg et al.,
2021). It is widely assumed that selective spot spraying
(treating individual plants using a manually operated spray
lance) will have fewer off-target impacts on native species
than broadcast or boom spraying (treating patches of sev-
eral plants with a vehicle-mounted boom spray; GeFellers
et al., 2020; Hunt, 2017; Rokich et al., 2009) and some
research supports this hypothesis. For example, Power
et al. (2013) found that automated spot spraying had fewer
nontarget impacts on native species than manual broadcast
or spot spraying (although it was not effective in reducing
the target weed). Another study found that broadcast
spraying was more effective in heavily invaded systems
while spot spraying was more effective in predominantly
native systems (Nyamai et al., 2011). Spray droplet size
affects herbicide uptake in target weeds, with larger, more
concentrated, droplets increasing efficacy over several fine
droplets (Cranmer & Linscott, 1991; Feng et al., 2003;
Ramsdale et al., 2003). Large droplets might limit horizon-
tal spray drift to nontreatment areas, while fine droplets
may limit vertical spray drift, but few studies have quanti-
fied the impacts of herbicide spray method and droplet size
on native plant communities (Cederlund, 2017).

In this study, we examined the short-term (3-year) influ-
ence of herbicide application on off-target plant communi-
ties in threatened temperate grasslands of southeastern
Australia. One of the most difficult-to-manage invasive
plants in this system is Hypericum perforatum L. (St. John’s
wort) which can form dense infestations in highly diverse
native grasslands (Smith et al., 2018). Spraying with the
broadleaf herbicide fluroxypr is commonly used by land
managers to control H. perforatum, with the aim of conserv-
ing biodiversity. It is well established, both in the literature
(e.g., Ainsworth & Mahr, 2001; Campbell & Nicol, 1997)
and through decades of on-ground experience in our study
system, that fluroxypr effectively controls H. perforatum,
even at the low levels typically found in spray drift
(Kleijn & Snoeijing, 1997). We have observed, however, that
herbicide application appears to be associated with a
decline in the presence and cover of native forbs. Few, if
any, tests of this observation exist in the literature.

Therefore, we set out to investigate the impact of fluroxypr
application on native grassland species and develop weed
management guidelines that have positive biodiversity out-
comes, while also effectively controlling the target invader.

We first conducted a spray drift experiment in grass-
lands invaded by H. perforatum to address the question:

1. How do three commonly used herbicide application
methods—spot, fine-boom, or coarse-boom spraying—
vary in spray distribution and droplet density?

We then conducted a nontarget impacts experiment in
grasslands rich in native forbs where H. perforatum was
almost absent to address the questions:

2. What is the influence of spot and boom spraying on
the richness and diversity of nontarget resident plant
species?

3. What is the influence of spot and boom spraying on
the occurrence and abundance of individual native
forb species?

We focused on biodiversity metrics used by government
agencies to monitor grassland quality (e.g., “indicator”
species richness) and on functional groups that provide
insight into the mechanism underlying observed responses
(e.g., legumes involved in N cycling). Finally, we
constructed a decision tree combining the outcomes of this
study with previously published literature and our field
experience in managing grasslands to make specific recom-
mendations about controlling H. perforatum under different
circumstances. Ultimately, we aimed to provide evidence-
based guidelines for land managers under urgent pressure
to conserve grassland biodiversity through practical and
affordable weed management techniques.

MATERIALS AND METHODS

Study region and target invader

The study was undertaken in three grassland reserves in
the Australian Capital Territory (ACT), near the capital
city of Canberra: Kama Nature Reserve, Jerrabomberra
West Nature Reserve and Mulanggari Grasslands Nature
Reserve (hereafter Kama, Jerrabomberra, and Mulanggari,
respectively). The region has a cool temperate climate,
with mean temperatures ranging from 13�C to 28�C in
summer to 0–11�C in winter (Australian Government
Bureau of Meteorology). Mean annual precipitation is
629 mm but is highly variable and rainfall is generally dis-
tributed throughout the year. The ecological community is
classified as Natural Temperate Grassland and is listed as
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threatened at the regional level (ACT Government Nature
Conservation Act 2014) and critically endangered at the
national level (Australian Government Environment Pro-
tection and Biodiversity Conservation Act 1999). Approxi-
mately 95% of Natural Temperate Grassland in Australia
has been cleared or degraded since European colonization
(Keith, 2004). Only small fragments (25–140 ha) remain in
an urban and agricultural matrix (ACT Government, 2005;
Williams & Morgan, 2015). Common native grasses
include Themeda, Austrostipa, Rytidosperma, Poa, and
Bothriochloa species and common exotic grasses include
Avena, Phalaris, Bromus, Aira, and Vulpia species. There
are two dominant native perennial grass types in the study
region: Themeda triandra (C4) dominated and
Austrostipa/Rytidosperma spp. (C3) dominated.

H. perforatum is native to Europe and, following its
introduction in the mid-1800s for medicinal and orna-
mental purposes, it became widespread and invasive in
temperate ecosystems of southeast Australia, including in
our study reserves (Harris & Gill, 1997). The species is
classed as invasive in its nonnative range (Buckley et al.,
2003) because it reproduces prolifically and spreads over
large areas (Richardson et al., 2000). We followed this
definition of “invasive” to refer to H. perforatum and
other plant species with this characteristic. We used the
more general term “exotic” to refer to nonnative plant
taxa introduced by humans (Richardson et al., 2000),
without necessarily indicating impact or spread. The spe-
cies has a lifespan of 6–7 years and can reproduce sexu-
ally or asexually through apomyxis and vegetative
suckering (Buckley et al., 2003). Viable seeds can remain
dormant in the soil for up to 20 years (Groves, 1997). In
its nonnative North American range, H. perforatum has
high genetic diversity (Maron et al., 2004) and can estab-
lish across broad environmental gradients without the
need to “match” conditions in its native range (Maron,
2006). In New Zealand, populations have higher density,
fecundity, vegetative reproduction and germination rates
compared with native European counterparts (Beckmann
et al., 2009, 2011).

In the ACT, H. perforatum is listed as a declared pest
(ACT Government, 2015) mainly due to its status as an
agricultural weed (being toxic to stock and competing
with pasture species; Groves, 1997). Management agen-
cies are legally required to actively prevent infestations
from spreading to neighboring premises. Although it is
believed to outcompete native species and threaten biodi-
versity, there is surprisingly little evidence to support this
assumption (Cullen et al., 1997) and its impact is cur-
rently unknown. Despite this, substantial resources have
been dedicated to controlling H. perforatum in nature
reserves that are managed primarily for biodiversity con-
servation. For example, in 2016–2017, 2673 ha of

H. perforatum were sprayed across nature reserves in the
ACT. H. perforatum is typically controlled through spot
or boom spraying using the narrow-spectrum broadleaf
herbicide fluroxypyr. This chemical does not kill grasses
(Campbell & Nicol, 1997) and is assumed to have mini-
mal impacts on native forb species, but no studies have
tested these assumptions. In 1997, a workshop of experts
called for urgent research on the impacts of
H. perforatum control methods on native species (Cullen
et al., 1997). Some studies have examined nontarget
impacts of biological control of H. perforatum (e.g., Willis
et al., 2003), but we are unaware of any studies that have
tackled this issue for chemical control, in our study
region or in grasslands generally. This knowledge gap
makes it impossible to effectively determine the costs and
benefits of the chemical control of H. perforatum. There
is growing concern among managers that controlling
H. perforatum with herbicide is doing more damage than
the species itself.

Study design overview

Grasslands in our study area are broadly classified as Nat-
ural Temperate Grassland but there is variation across
the region in the composition of dominant grasses (Smith
et al., 2018), reflecting variation in soil depth, nutrient
status, and disturbance regime. This variation drives dif-
ferences in grassland physical structure (Morgan &
Salmon, 2020) and biodiversity (Smith et al., 2018). The
composition of dominant grasses therefore influenced
which reserves we targeted for the two experiments. The
spray drift experiment (Question 1) was conducted in
Kama (10 km west of Canberra), where the C4 grass
T. triandra is dominant and H. perforatum is widespread
with variable density (Smith et al., 2018). This allowed us
to compare spray drift for each herbicide application
method in areas without H. perforatum and areas where
it was present at moderate-to-high densities, approximat-
ing scenarios frequently encountered by land managers.
If the density of H. perforatum influenced the amount of
chemical that reached the ground (and therefore nontar-
get species), guidelines for spraying could be modified
depending on the target invader’s cover.

The nontarget impacts experiment (Questions 2 and
3) was examined at two reserves where H. perforatum
was rare or absent: Jerrabomberra and Mulanggari, south
and north of Canberra, respectively, and separated by
~20 km. Our primary goal was not to demonstrate the
chemical’s effectiveness (which is already well
established), but rather to determine its impact on non-
target species. If we conducted this experiment where
H. perforatum was common, we would have been unable
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separate the effects of changing physical structure from
killing the invader (e.g., changes in light, space and nutri-
ent availability) from the primary effects of the chemical.
Thus, working where H. perforatum was rare or absent
allowed us to examine herbicide effects on resident com-
munities without results being confounded by structural
changes or previous spray history.

Both reserves are dominated by C3 grasses, chiefly
Austrostipa and Rytidosperma species, but they differ in
species composition. Themeda is virtually absent from
Jerrabomberra (recorded in only one plot in this study),
while it is common at Mulanggari (mean percentage
cover per sampling quadrat = 7%, range 0%–50%).
Themeda typically occurs on deep, low-nutrient soils and
is often used as an indicator of grassland quality as it
declines in abundance with livestock overgrazing
(Dorrough et al., 2004), nutrient enrichment (Groves
et al., 2003) and fire frequencies that are low (>6 years;
Morgan & Lunt, 1999) or very high (biennial; Prober
et al., 2007). We previously found that Themeda grass-
lands had higher species richness of some plant func-
tional groups (Smith et al., 2018). Herbicide effects could
therefore differ between these grasslands because they
have different initial plant compositions. Leaf litter cover
was also higher in Themeda grasslands, compared with
C3 grassland (Smith et al., 2018), which we anticipated
could influence the amount of herbicide that reached the
ground during spraying. Thus, we treated the two
reserves not as replicates but as tests of herbicide effects
in different grassland subtypes, which was reflected in
our analysis (described below).

Spray drift experiment

To quantify vertical spray drift for the three herbicide
application methods (Question 1), we used water-sensitive
cards that stained on contact with liquid (Appendix S1:
Figure S1). In November 2017, we deployed 30 cards at
Kama: 15 in areas with no H. perforatum and 15 where
H. perforatum was present at moderate-to-high densities
(i.e., density was a two-level factor). The distance between
the two weed-density areas was >100 m. Cards within
density levels were separated by ~10 m, over a 5000 m2

area, and spray treatments were assigned randomly to
cards. Cards were placed ~20 cm above ground on a piece
of dowel to correspond with the height that native forb
vegetation typically reaches. Cards in the moderate to
high-density treatment were consistently positioned at
approximately the same distance below the canopy of
H. perforatum. For each weed-density level, the 15 cards
were assigned one of three spray treatments, resulting in
five replicates per treatment. For each spray treatment we

used Starane Advanced (fluroxypyr) with 500 ml uptake
oil per 100 L of water. The treatments were: (1) spot
spraying with a vehicle-mounted quick spray unit and
spray lance (rate = 300 mL/100 L water), (2) vehicle-
mounted boom spraying (fine droplet) with a twin-bodied
nozzle at 60� (rate = 1.8 L/ha, water 100 L/ha) and
(3) vehicle-mounted boom spraying (coarse droplet) with a
flat pen nozzle at 90� (rate = 1.8 L/ha, water 75 L/ha).
Treatments were applied on a windless day to minimize
horizontal spray drift. Under both H. perforatum density
levels, spraying was applied at the same rate, and from the
same height above ground (~60 cm for spot spraying and
100 cm for boom spraying). The spray treatments were
applied randomly so that no plant functional groups were
targeted under either density level. After application, we
scanned the cards and used the select function in Adobe
Photoshop to calculate the proportion of the card stained
by herbicide within a standardized area (Appendix S1:
Figure S1).

Nontarget impacts experiment

To test the effects of herbicide on native plant diversity
and individual forb species (Questions 2 and 3) we
established a before-after-control-impact experiment at
Jerrabomberra and Mulanggari. At each reserve, we
established eight replicate plots (each ~400 m2), sepa-
rated by a minimum of 100 m (range 106–387 m). Three
permanently marked 1-m2 treatment quadrats (control,
spot spray and boom spray) were randomly assigned
within each of the eight plots, giving 48 quadrats across
the two reserves. Quadrats were spaced at least 8 m apart
within plots (range 8–14 m) to ensure treatments were
spatially separated. Given our interest in fluroxypyr
effects on native forbs, the location of the quadrats was
chosen to include at least one (and typically four, median
across 48 quadrats = 4) species from the following:
Chrysocephalum apiculatum (Asteraceae), Eryngium
ovinum (Apiacea), Tricoryne elatior (Asphodelaceae), and
Desmodium varians and/or Glycine tabacina (Fabaceae).
Other native forbs commonly present in plots included
Lomandra filiformis coriacea, Plantago varia, and
Triptilodiscus pygmaeus. To the best of our ability, we
aimed to keep conditions across quadrats within plots as
visually similar as possible, in terms of dominant species,
cover of bare ground, and drainage.

Two experienced botanists surveyed vegetation in all
quadrats between 2 and 20 November 2017 (spring)
before treatment application. The number of individuals
of all plant taxa observed within each quadrat were
counted (abundance) and assigned a cover score to the
nearest 10%. Most taxa (79%) were identified to species
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level following NSW Flora Online (http://plantnet.
rbgsyd.nsw.gov.au). Twenty-five taxa were difficult to
identify and were either assigned to a genus (e.g., Avena,
Aira, Conyza, and Vulpia) or to three different
morphospecies (Rytidosperma).

Following the initial plant survey, the herbicide
Starane Advanced (fluroxypyr) with 500 ml uptake oil
per 100 L water was applied to the treatment quadrats,
including buffers, on 18 December and 19 December
2017. Treatment 1 (spot spray) was applied with a
vehicle-mounted quick spray unit (pressure = 15 kPA,
rate = 300 mL/100 L water). Treatment 2 (boom spray,
fine droplet) was applied with a vehicle-mounted twin-
bodied nozzle at 60� (rate = 1.8 L/ha and 75 L water/ha).
No herbicide was applied to control quadrats and a
screen was placed between control and treatment quad-
rats to reduce the risk of horizontal spray drift. All quad-
rats were resurveyed between 5 November and
16 November 2018 and 14 November to 23 November
2019 by one of the botanists involved in the initial survey,
following the pretreatment survey procedure.

Functional group classification

Our study focused on herbicide effects on native forbs,
but a reduction in forbs following fluroxypyr application
can drive indirect changes in plant community composi-
tion. Thus, we included a suite of functional groups in
our analysis to understand the community-level changes
to herbicide application (Table 1). Grasses can respond
positively to a reduction in forbs following fluroxypyr
application (Kleijn & Snoeijing, 1997; Lodge et al., 1994)
and we anticipated that C3 and C4 grasses might respond
differently given the early summer application of herbi-
cide. Annual forbs that, in our study system, are predomi-
nantly exotic (79%), are known to be strong early
invaders (Byun et al., 2013; Galland et al., 2019), espe-
cially those which can fix nitrogen (Catford et al., 2019).
These might therefore have a competitive advantage if
predominantly perennial native forbs are reduced. Peren-
nial species, conversely, have slower leaf economics
(Reich, 2014) and are likely to have a stronger competi-
tive ability in the longer term (e.g., >5–10 years, Catford
et al., 2019). We thus predicted that they would respond
weakly or not at all to a short-term reduction in native
forbs.

We classified each taxon into categories based on ori-
gin (native/exotic), lifespan (annual/perennial), growth
form (forb, grass, shrub, sedge, rush), photosynthetic
pathway for grasses (C3/C4) and ability to fix nitrogen
(legume/nonlegume; Table 1; Díaz et al., 2007; Smith
et al., 2018). In addition to these categories widely used

in academic science, we also classified taxa into five cate-
gories used by the local government to monitor grassland
quality (Australian Government, 2017; Rehwinkel, 2015):
(1) Indicator A, native taxa that are uncommon or rare,
sensitive to disturbance and indicate high-value native
grassland; (2) Indicator B, native taxa that indicate
high-value native grassland but are more common than
A and tolerate some disturbance; (3) Indicator X/Y,
high-impact exotic taxa, often declared noxious weeds

TABL E 1 Twenty-seven functional groups of plant taxa used

to assess effects of herbicide on nontarget plant communities in

Natural Temperate Grasslands of southeastern Australia.

Functional group
Levels

within group
No.

species

All species All species 119

Grassland quality
monitoring

Indicator A 24

Indicator B 14

Indicator X/Y 10

Indicator Z 31

Common/increaser 40

Origin Native 78

Exotic 41

Growth form Sedge/rush 6

C3 grassa 25

Origin × growth form Native forb 44

Exotic forb 31

Native grass 24

Exotic grass 10

Origin × grass type Native C3 grass 16

Native C4 grass 8

Exotic C3 grass 9

Origin × lifespan
× growth form

Native annual forb 7

Native perennial forb 37

Exotic annual forb 26

Exotic perennial forb 5

Exotic annual grass 9

Exotic perennial grass 1

Origin × growth
form × N-fixing

Native nonlegume forb 40

Native legume forb 4

Exotic nonlegume forb 24

Exotic legume forb 7

Note: Taxa were assigned to groups hierarchically (e.g., we analyzed all
native species, and further divided them into native forbs and native grasses,
etc.), to examine broad responses while investigating functional traits

driving broader patterns.
aThe C4 grass group is encapsulated by the Native C4 grass group as all C4
grasses in our study system are native.
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and difficult to manage; (4) Indicator Z, low-impact,
mostly annual weeds; and (5) Common/Increaser species,
native and exotic taxa that tolerate or respond positively
to disturbance. Taxa were assigned to 27 functional
groups based on these categories in a hierarchical way
and these groups were used in the analysis. For example,
we analyzed the richness and diversity of all taxa, native
taxa and exotic taxa separately, while native and exotic
grasses were further divided into C3 and C4 categories
(Table 1). This allowed us to analyze broad functional
responses while also examining which functional traits
drove broader patterns.

For each functional group in each quadrat, we calcu-
lated species richness (number of species) and, to account
for variation in abundance and evenness among species,
the Inverse Simpson’s Diversity Index. We used this
index as a measure of biodiversity because it does not
inflate the zeros in the data; richness values of one had
diversity values of one, unlike other diversity metrics
where richness values of one equal zero.

Analysis

To analyze the influence of the spray method (a three-
level factor) and H. perforatum density (a two-level fac-
tor) on the proportion of the water-sensitive card affected
by herbicide (Question 1), we fitted a beta regression
model with a logit link function using the mgcv package
(Wood, 2011) in R (R Core Team, 2022). We included the
main effects of the two terms and their interaction to
determine whether the influence of the spray method dif-
fered depending on the density of H. perforatum. This
model included the fixed effects only. To examine differ-
ences between treatment levels within the fitted variables
(e.g., spot spray vs. fine boom), we calculated the least-
squares means contrasts and 95% CI on the link scale
using custom scripts (Smith et al., 2023). We inferred
important differences when the confidence interval did
not include zero.

To analyze the influence of the spray method on the
occurrence, richness and diversity of plant functional
groups, and on the presence and abundance of individual
native taxa we used generalized linear mixed models
(GLMM) in R. Each analysis used a different GLMM fam-
ily, appropriate for the data type, but we used the same
model structure and approach for all data types. Our pri-
mary hypothesis was that there would be a two-way
interaction between year and spray method, reflecting
the before-after-control-impact nature of the study
design. That is, the effect of the spray method should not
be detectable in 2017 before the treatments were applied;
any effects should only become apparent in 2018 and

2019. However, we also wanted to determine whether
these effects were generalizable across space, thus we first
fitted a three-way interaction between year (a linear
numeric variable corresponding to the three survey
years), spray method (a factor with three levels: control,
spot spray and boom spray) and reserve (a factor with
two levels: Jerrabomberra and Mulanggari). A detectable
three-way interaction would indicate differential effects
of herbicide in the two reserves which vary in initial
plant species composition. We used a p-value to deter-
mine the importance of the three-way interaction, and
removed the three-way term if p ≤ 0.05. In cases where
the three-way term was removed, our final model was
year × spray method + reserve. We did not simplify the
model further as this corresponded to our primary
hypothesis. Support for this model (two-way interaction
p < 0.05) would indicate that the effects of the spray
method were consistent across reserves, while also
accounting for overall differences in the response variable
between reserves (a main effect of reserve). We calculated
least-squares mean contrasts among treatment levels
within years, within reserves, as described for the spray
drift analysis.

Our analysis goal was to examine variation in species
richness and diversity of the 27 functional groups. When
data are limited, however, such as with rare or spatially
patchy functional groups, important effects can be missed
with models for count or continuous numeric data as
they are typically data hungry. Thus, we began by model-
ing the probability of occurrence (presence/absence) for
10 of the 27 functional groups with more than >20%
zeros (absences) across the 144 observations in the data
(Appendix S1: Table S1). For these groups, we modeled
probability of occurrence using binomial GLMMs with a
logit link in the lme4 package (Bates et al., 2015). This
allowed us to determine whether spraying affected the
probability of detecting any plant in those rare or patchy
groups.

For all functional groups, we then modeled species
richness (count data) with a negative binomial
distribution and the Inverse Simpson’s Diversity Index
with a gamma distribution (appropriate for positive, con-
tinuous numeric data with heterogeneity, i.e., over-
dispersion). Both of these model types were fitted in the
glmmADMB package (Fournier et al., 2012; Skaug et al.,
2016) in R. We excluded exotic perennial grass and
sedge/rush from these analyses because they had fewer
total observations than the number of quadrats in the
study (n = 5 and n = 27, respectively; Table 1).

To examine the effects of the spray method on the
occurrence and abundance of individual native forb spe-
cies (the growth form most likely affected by broadleaf
herbicide), we focused on the five species used to define

ECOLOGICAL APPLICATIONS 7 of 18
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the study plots and three other species commonly found
in our study region (described above and in Appendix S1:
Table S2). For all eight species, we first modeled probabil-
ity of occurrence using binomial GLMMs with a logit link
function. We then modeled abundance of individual spe-
cies, conditional on presence (i.e., the positive values in
the data) using a truncated negative binomial model
in glmmADMB. We were unable to model abundance
for species with few or strongly clustered data (>50%
zeros), leaving four species in our abundance
analysis: Chrysocephalum apiculatum, Eryngium ovinum,
Lomandra filiformis coriacea and Tricoryne elatior
(Appendix S1: Table S2).

RESULTS

Overview

We recorded 119 species during the study, of which
78 (66%) were native (Table 1). In general, herbicide
application led to a decline in the occurrence and
abundance of native forbs, while causing an increase in
the richness of exotic plant functional groups (those
not normally targeted with herbicide; Appendix S1:
Tables S1 and S2). These effects were most pronounced
for spot spraying. Effects of herbicide were evident only
for forbs, except for an increase in exotic species rich-
ness overall, which was likely to have been driven by
the response of exotic forbs. Grasses were not affected
by herbicide nor was the sedge/rush group, although
the latter had too few data to draw reliable conclusions.
None of the “indicator” groups responded to herbicide
(Appendix S1: Table S1). Where significant main effects
of reserve were found, all functional groups, except
native C3 grasses, were more diverse at Mulanggari
than Jerrabomberra, across all years (Appendix S1:
Table S3).

Herbicide application method (Question 1)

The model examining the proportion of water-sensitive
cards affected by spraying indicated an effect of the spray
method (p < 0.001) but no effect of H. perforatum density
(p = 0.965) or the interaction between spray method and
H. perforatum density (p = 0.668). Spot spraying was
estimated to cause near complete covering of the water-
sensitive cards (91%–99%) which was significantly
higher than both boom spray methods (Figure 1). The
two boom spraying methods only partially covered the
cards (5%–31%) and were not significantly different from
one another (Figure 1).

Effect of herbicide on resident
communities (Question 2)

We found the effects of fluroxypyr on the probability of
occurrence of two of the 10 functional groups analyzed
with binomial models (Appendix S1: Table S1). For native
leguminous forbs, there was a significant three-way inter-
action (p = 0.031), indicating that the interactive effect of
the spray treatment across years differed between the two
reserves (Figure 2a,b). This model showed a significant
decline in the occurrence of native leguminous forbs with
spot spraying at the Themeda grassland, Mulanggari
(Figure 2a). There was also a clear decline in the occur-
rence of native leguminous forbs with both spot and
boom spraying at the Austrostipa/Rytidosperma grassland,
Jerrabomberra. However, this functional group was pre-
sent on all control quadrats in these years and contrasts
on the link scale were not reliably estimated because
the fitted values were approaching the boundary of the
model (Figure 2b). For exotic leguminous forbs there was
a consistent interaction between year and spray method
across reserves (two-way interaction, p = 0.003). Spot
spraying led to a higher probability of the occurrence
of exotic leguminous forbs at both reserves, while
boom spraying had no effect on this functional group
(Figure 2c,d).

For species richness, we found significant interactions
for three of the 25 functional groups analyzed
(Appendix S1: Table S1). There was a significant two-way
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F I GURE 1 The effect of three different spraying methods and

in situ Hypericum perforatum density (none or moderate to high)

on the proportion of water-sensitive cards affected by spraying

(model estimates and 95% CI, on the response scale).

Model p-values were: spray method <0.001; H. perforatum

density = 0.965, method × density = 0.668. Shared letters (a, b)

indicate no difference. Hypericum perforatum is the target species

regularly sprayed in our study system. An example of the water-

sensitive card method is shown in Appendix S1: Figure S1.
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interaction between year and spray method for all exotic
species (p < 0.001; Figure 3a,b) and exotic forbs (p = 0.002;
Figure 3c,d). Spot spraying caused an increase in the rich-
ness of these functional groups by the end of the experi-
ment in 2019. The positive effect of spot spraying was also
evident in 2018 for all exotic species (Figure 3a,b). For
exotic annual forbs, there was a significant three-way inter-
action between year, spray method and reserve (p = 0.039).
Spot spraying led to a significant increase in the richness
of this group at Jerrabomberra but not Mulanggari
(Figure 3e,f). Overall, the species richness results
suggested the effect of spraying on all exotic species was
likely to have been driven by the responses of forbs,
because no other exotic functional groups at a finer level

responded to the herbicide (Appendix S1: Table S1). There
were also the main effects of year on all of these three
groups, with richness declining between 2017 and 2019
(Figure 3).

For the Inverse Simpson’s Index, we found significant
interactions for three of the 25 functional groups ana-
lyzed (Appendix S1: Table S1). However, interactions for
two groups (Indicator B and exotic leguminous forbs)
were driven by differences between reserves, and did not
relate to differences among herbicide treatment levels
within years within reserves (Appendix S1: Figure S2a,b,e,f).
For exotic annual forbs, the interactive effect of the
spray method across years differed between the two
reserves (three-way interaction, p = 0.014). This model
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F I GURE 2 The effect of year and spray method on the probability of occurrence of plant species modeled as functional groups.

(a, b) For native leguminous forbs the interactive effect of the spray treatment across years differed between the two reserves

(three-way interaction) while for (c, d) exotic leguminous forbs there was a consistent interaction between year and spray method

across reserves (two-way interaction). Mulanggari is a Themeda (C4) grassland and Jerrabomberra is Austrostipa/Rytidosperma

(C3) grassland. Estimates and 95% CI are shown on the response scale (probability). The asterisks (*) indicate treatment levels that

were different from the control, on the link (logit) scale, within years, within reserves. †Native leguminous forbs were present on all

control quadrats in these years, and a decline in occurrence was observed in both the spot spray and boom spray quadrats. However,

contrasts on the link scale were not reliably estimated between the control and boom treatments because the fitted values were

approaching the boundary of the model.
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showed that spot and boom spraying caused an increase
in exotic annual forb diversity at Jerrabomberra but not
Mulanggari (Appendix S1: Figure S2c,d). Thus, account-
ing for relative abundance revealed an effect of boom
spraying that was not evident in the species richness
analysis, where only spot spraying increased exotic
annual forb richness (Figure 3e,f).

Effect of herbicide on individual forbs
(Question 3)

We found an effect of herbicide on the probability of
occurrence of one of the eight species analyzed
(D. varians) and on the abundance of two of the four spe-
cies analyzed (C. apiculatum and E. ovinum; Figure 4;
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F I GURE 3 The effect and of year and spray method on species richness of plant functional groups. For (a, b) all exotic plants and

(c, d) exotic forbs there was a consistent interaction between year and spray method across the two reserves (two-way interaction).

(e, f ) For exotic annual forbs the interactive effect of the spray treatment across years differed between the two reserves (three-way

interaction). Mulanggari is a Themeda (C4) grassland and Jerrabomberra is Austrostipa/Rytidosperma (C3) grassland. Estimates and 95%

CI are shown on the response scale (richness). The asterisks (*) indicate treatment levels that were different from the control, on the link

(log) scale, within years, within reserves.
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Appendix S1: Table S2). For E. ovinum however, there
was an inexplicable treatment effect evident before
herbicide was applied in 2017, thus we were unable
to draw reliable conclusions about this species
(Appendix S1: Figure S3). Spot spraying caused a
consistent decline in the occurrence of D. varians at
both locations (two-way interaction, p = 0.001). This
decline was also evident for boom spraying although
contrasts on the link scale were not reliably estimated
because the fitted values were approaching the boundary
of the model (Figure 4a,b). For C. apiculatum, the
interactive effect of the spray method across years dif-
fered between the two reserves (three-way interaction,
p = 0.025). Spot spraying caused a decline in
C. apiculatum abundance at Jerrabomberra but not
Mulanggari (Figure 4c,d).

DISCUSSION

In threatened temperate grasslands managed primarily
for conservation, we found that the application of herbi-
cide to control the invasive H. perforatum led to a short-
term (3-year) decline in the occurrence and abundance of
native forb functional groups and individual species. At
the same time, herbicide led to an increase in the occur-
rence and richness of exotic forbs, a functional group not
usually targeted by herbicide application. Spot spraying
had more negative impacts on native species and more
positive impacts on exotic species than boom spraying,
although some effects were evident for both methods.
Our direct measurements of spray coverage showed that
spot spraying almost completely covered the ground sur-
face, and suggest that native forbs would be heavily
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F I GURE 4 The effect of year and spray method on individual native plant species. (a, b) The probability of occurrence of

Desmodium varians was affected by a consistent interaction between year and spray method across the two reserves (two-way

interaction). For the abundance of (c, d) Chrysocephalum apiculatum, the interactive effect of the spray treatment across years

differed between the two reserves (three-way interaction). Mulanggari is Themeda (C4) grassland and Jerrabomberra is

Austrostipa/Rytidosperma (C3) grassland. Estimates and 95% CI are shown on the response scale (richness). The asterisks (*)

indicate treatment levels that were different from the control, on the link scale (a, b logit; c, d log), within years, within reserves.

Contrasts between the control and boom treatments (a, b) were not reliably estimated because the fitted values were approaching

the boundary of the model.
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impacted by this method. To assist land managers in
deciding when and how to control the invasive plant
Hypericum perforatum, we constructed a decision tree
that combined the outcomes of this study with previously
published literature and our on-ground field experience
in managing grasslands (Appendix S1: Section S1). The
decision tree shows that boom spraying should be used
when H. perforatum density is moderate to high and spot
spraying (often at reduced pressure) should only be used
when H. perforatum density is very low (Appendix S1:
Figure S4). Given regional variation in H. perforatum
density, spatial scale of invasion, soil depth, and conser-
vation values, the decision tree allows managers to evalu-
ate the costs and benefits of chemical control and
indicates situations where alternative or modified
methods could be used (Appendix S1: Figure S4). Because
this was a short-term study, research is needed to exam-
ine whether native species can recolonize in the longer
term following herbicide application.

Fluroxypyr is a broadleaf herbicide that, in our
study system, is assumed to have minimal effects on
nontarget species because it does not negatively
impact grasses and annual forbs can regenerate in the
following growing season (Campbell & Nicol, 1997).
However few, if any, studies have quantified its
impact across the whole grassland community. Our
results are interesting first because they disprove these
assumptions—fluroxypyr negatively impacts native
forb species—and second because they suggest that
fluroxypyr can increase the richness and diversity of
exotic forbs. Native species in our system might there-
fore be impacted directly by the chemical but also indi-
rectly by competition with exotics. Our study was not
designed to differentiate between these potential mech-
anisms, but there is evidence for both chemical
(Carpenter et al., 2020) and competitive (Byun et al.,
2013) processes in the literature.

Competitive displacement of native species by exotics
has been documented in grassland communities else-
where (Thiele et al., 2010) and how this plays out
depends on the traits of the invader as they relate to the
resident community (Britton et al., 2021). In our study,
exotic forbs responded positively to herbicide spot
spraying and, at one location, this appeared to be driven
specifically by exotic annuals. Other studies have shown
annual forbs to be strong early invaders (e.g., Byun et al.,
2013; Galland et al., 2019), while perennial species are
likely to have a stronger invasibility in the longer term
(e.g., > 5–10 years, Catford et al., 2019). Our study cov-
ered only 3 years, so different functional groups (native
or exotic) might respond differently to herbicide over lon-
ger timescales and continued monitoring is needed to
understand these effects.

A potential reason for the increase in the occurrence
of exotic leguminous forbs specifically, is that they had
died back or slowed their growth at the time of summer
spraying (all exotic legumes in our study were annual,
cool-season Trifolium species). Their positive response to
herbicide could have been facilitated by reduced competi-
tion with native legumes that were directly affected by
fluroxypyr during their active growing period. This would
require the exotic species to recruit from a soil-stored
seed bank or through dispersal from surrounding areas,
either of which is possible given their high fecundity and
small seeds (Boswell et al., 2003). Herbicides can nega-
tively impact seed viability in exotic and native plants
(Carpenter et al., 2020; Steadman et al., 2006) but it does
not appear to have affected exotic species in our study
(possibly because the seed of many exotics had matured
before spraying). In addition to the positive influence on
exotic leguminous forbs, we also found that spot spraying
increased the richness of exotic species generally, includ-
ing grasses. It is possible that these results are linked as
legumes could have enhanced the ability for a greater
diversity of exotic species to establish by increasing N
availability (Frankow-Lindberg, 2012). The increase in
exotic forb species richness with spot spraying occurred
despite the observed declines in richness over time. These
declines probably reflect the prolonged drought between
2017 and 2019, coinciding with the years of the current
study, when record low rainfall occurred (Australian
Government Bureau of Meteorology).

A final possibility relating to competitive processes is
that, compared with native species, there were more
exotic annual (26 vs. 7) and exotic leguminous forb
(7 vs. 4) species in these grasslands (Table 1). Thus, even
if both groups were similarly impacted, a greater propor-
tion of exotic species groups could have avoided the
strong effects of herbicide by chance because of their
higher occurrence. Regardless of the underlying mecha-
nism, the competitive effects of invading species might
increase as the climate warms by increasing the impact
on the individual fitness of resident species (Britton et al.,
2021). Any practice that gives exotic species a further
competitive edge, such as herbicide appeared to do in this
study, should therefore be avoided.

Fluroxypyr mimics the regulation of auxin, a plant hor-
mone involved in growth and development (Woodward &
Bartel, 2005) and mutations at an auxin signaling gene are
involved in the development of fluroxypyr resistance
(LeClere et al., 2018). By late 2021, herbicide resistance had
been documented in 266 species globally, 82 of which were
resistant to auxin mimics and four of which were forbs spe-
cifically resistant to fluroxypyr (Heap, 2021). One of these is
Gallium aparine and our data included two exotic Gallium
taxa (G. divaricatum [n individuals = 244] and an
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unidentified Gallium species [n = 3]). We are not
suggesting that our results reflect evolved fluroxypyr resis-
tance, but highlight that some species, especially invasive
forbs, are not susceptible to the chemical pathway on which
fluroxypyr acts (Hill et al., 1996). Introduced invasive spe-
cies often have high levels of genetic diversity, which pro-
motes the rapid spread of favorable alleles and thus
adaptation to a wide range of environmental conditions
(Smith et al., 2020; van Boheemen et al., 2019; Wilson et al.,
2009). Many exotic forbs in our study system are invasive in
Australia (e.g., Hypochaeris radicata, Plantago lanceolata,
Taraxacum spp., and Trifolium spp., McDougall et al., 2005;
Smith et al., 2020). Thus, if the documented increases in
exotic forbs following fluroxypyr application reflected toler-
ance to the chemical (founded on high levels of genetic and
phenotypic variability), exotic forbs could exploit the space
and nutrient availability left following declines in native
forbs. More research is needed to quantify this risk.

Land managers often assume that spot spraying is the
most ecologically sensitive method of herbicide applica-
tion due to the operator’s ability to specifically target
weeds and presumably reduce nontarget impacts
(GeFellers et al., 2020; Hunt, 2017). Our results showed
the opposite, that spot spraying covered more surface
area than boom spraying. However, we found no effect of
H. perforatum density on surface coverage, all three treat-
ments covered approximately the same surface area
across two contrasting levels of H. perforatum density.
Despite this, the scale of the impact of fluroxypyr will
depend on the scale and magnitude of H. perforatum
infestation simply because increased amounts of chemi-
cal will be applied when there is a greater density of the
target weed. In our experiment, we applied spot spraying
consistently, at the same rate across both density levels.
In reality however, herbicide application rate is not set
with the spot spray apparatus and operators can easily
overapply herbicide. When target weed density is high to
moderate, this will translate to a high chemical load as
the operator will spray more plants. This was clearly indi-
cated on our water-sensitive cards and reflected in the
plant community data. Reducing the pressure of the spot
sprayer (e.g., from 15 to 5 kPA) could substantially mini-
mize negative effects on native species, while still apply-
ing enough herbicide to control the target invader
(Appendix S1: Figure S4).

To assist land managers in deciding when and how to
control the invasive plant Hypericum perforatum, we
constructed a decision tree that combined the outcomes of
this study with previously published literature and our field
experience in managing grasslands (Appendix S1: Section
S1, Figure S4). The decision tree is structured into four
branches: Branch (1) H. perforatum density; Branch (2) spa-
tial scale of infestation (e.g., landscape scale vs. isolated);

Branch (3) conservation (floristic) value of the site; and
Branch (4) soil depth. The physical and ecological condi-
tions of sites can be assessed at each branch to determine a
final recommendation for the control method (provided in
the fifth column of the decision tree). Given the many com-
peting priorities handled by land management agencies,
the decision tree allows for “no treatment” in grasslands
with low conservation value, where H. perforatum density
is low or unlikely to have a significant impact, such as in
shallow soils (Appendix S1: Figure S4).

In our study system, the use of herbicide to control
H. perforatum is based largely on its legal status as a
declared pest and assumptions about its impact on biodi-
versity (Campbell & Nicol, 1997). However, we still have
little knowledge about the extent to which H. perforatum
impacts native biodiversity, an essential topic for future
research. It is possible that chemical control is doing
more harm to these threatened grasslands than the weed
itself and this must be quantified. Our data suggest that,
when H. perforatum density is moderate to high, methods
of weed control other than herbicide should be investi-
gated and implemented. In the same study system, we
have found annual mowing (Smith et al., 2018) and pre-
scribed fire (McDougall et al., 2016) have led to positive
biodiversity outcomes for plant communities and threat-
ened animal species. Careful application of prescribed
fire might be especially important in these grasslands,
not so much for its ability to reduce H. perforatum den-
sity (which can rapidly resprout following a fire, Briese,
1996) but for its ability to promote the establishment and
growth of native grasses, which confer ecosystem-level
resistance to invasion by exotic species (Morgan &
Salmon, 2020; Prober & Lunt, 2009; Prober & Thiele,
2005). Thus, fire, combined with revegetation of founda-
tion grass species where propagule pressure is low, might
be an optimal way to restore native grasslands while
avoiding secondary invasion (Pearson et al., 2016).
Although this might be more costly in the short term,
focusing on ultimate restoration goals rather than short-
term solutions can be more cost effective in the long run
(Prior et al., 2018) while increasing the likelihood of
effective biodiversity conservation. Given the declines in
native forbs with herbicide that we documented here,
this longer term strategy that minimizes chemical inputs
seems warranted.
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